58 research outputs found

    Efficiency versus Convergence of Boolean Kernels for On-Line Learning Algorithms

    Full text link
    The paper studies machine learning problems where each example is described using a set of Boolean features and where hypotheses are represented by linear threshold elements. One method of increasing the expressiveness of learned hypotheses in this context is to expand the feature set to include conjunctions of basic features. This can be done explicitly or where possible by using a kernel function. Focusing on the well known Perceptron and Winnow algorithms, the paper demonstrates a tradeoff between the computational efficiency with which the algorithm can be run over the expanded feature space and the generalization ability of the corresponding learning algorithm. We first describe several kernel functions which capture either limited forms of conjunctions or all conjunctions. We show that these kernels can be used to efficiently run the Perceptron algorithm over a feature space of exponentially many conjunctions; however we also show that using such kernels, the Perceptron algorithm can provably make an exponential number of mistakes even when learning simple functions. We then consider the question of whether kernel functions can analogously be used to run the multiplicative-update Winnow algorithm over an expanded feature space of exponentially many conjunctions. Known upper bounds imply that the Winnow algorithm can learn Disjunctive Normal Form (DNF) formulae with a polynomial mistake bound in this setting. However, we prove that it is computationally hard to simulate Winnows behavior for learning DNF over such a feature set. This implies that the kernel functions which correspond to running Winnow for this problem are not efficiently computable, and that there is no general construction that can run Winnow with kernels

    Translating between Horn Representations and their Characteristic Models

    Full text link
    Characteristic models are an alternative, model based, representation for Horn expressions. It has been shown that these two representations are incomparable and each has its advantages over the other. It is therefore natural to ask what is the cost of translating, back and forth, between these representations. Interestingly, the same translation questions arise in database theory, where it has applications to the design of relational databases. This paper studies the computational complexity of these problems. Our main result is that the two translation problems are equivalent under polynomial reductions, and that they are equivalent to the corresponding decision problem. Namely, translating is equivalent to deciding whether a given set of models is the set of characteristic models for a given Horn expression. We also relate these problems to the hypergraph transversal problem, a well known problem which is related to other applications in AI and for which no polynomial time algorithm is known. It is shown that in general our translation problems are at least as hard as the hypergraph transversal problem, and in a special case they are equivalent to it.Comment: See http://www.jair.org/ for any accompanying file

    Redundancy, Deduction Schemes, and Minimum-Size Bases for Association Rules

    Full text link
    Association rules are among the most widely employed data analysis methods in the field of Data Mining. An association rule is a form of partial implication between two sets of binary variables. In the most common approach, association rules are parameterized by a lower bound on their confidence, which is the empirical conditional probability of their consequent given the antecedent, and/or by some other parameter bounds such as "support" or deviation from independence. We study here notions of redundancy among association rules from a fundamental perspective. We see each transaction in a dataset as an interpretation (or model) in the propositional logic sense, and consider existing notions of redundancy, that is, of logical entailment, among association rules, of the form "any dataset in which this first rule holds must obey also that second rule, therefore the second is redundant". We discuss several existing alternative definitions of redundancy between association rules and provide new characterizations and relationships among them. We show that the main alternatives we discuss correspond actually to just two variants, which differ in the treatment of full-confidence implications. For each of these two notions of redundancy, we provide a sound and complete deduction calculus, and we show how to construct complete bases (that is, axiomatizations) of absolutely minimum size in terms of the number of rules. We explore finally an approach to redundancy with respect to several association rules, and fully characterize its simplest case of two partial premises.Comment: LMCS accepted pape

    Quantum machine learning: a classical perspective

    Get PDF
    Recently, increased computational power and data availability, as well as algorithmic advances, have led machine learning techniques to impressive results in regression, classification, data-generation and reinforcement learning tasks. Despite these successes, the proximity to the physical limits of chip fabrication alongside the increasing size of datasets are motivating a growing number of researchers to explore the possibility of harnessing the power of quantum computation to speed-up classical machine learning algorithms. Here we review the literature in quantum machine learning and discuss perspectives for a mixed readership of classical machine learning and quantum computation experts. Particular emphasis will be placed on clarifying the limitations of quantum algorithms, how they compare with their best classical counterparts and why quantum resources are expected to provide advantages for learning problems. Learning in the presence of noise and certain computationally hard problems in machine learning are identified as promising directions for the field. Practical questions, like how to upload classical data into quantum form, will also be addressed.Comment: v3 33 pages; typos corrected and references adde

    A New Algorithm for Learning Range Restricted Horn Expressions

    Get PDF
    A learning algorithm for the class of range restricted Horn expressions is presented and proved correct. The algorithm works within the framework of learning from entailment, where the goal is to exactly identify some pre-fixed and unknown expression by making questions to membership and equivalence oracles. This class has been shown to be learnable in previous work. The main contribution of this paper is in presenting a more direct algorithm for the problem which yields an improvement in terms of the number of queries made to the oracles. The algorithm is also adapted to the class of Horn expressions with inequalities on all syntactically distinct terms where further improvement in the number of queries is obtained

    Foreword

    No full text
    • 

    corecore